Dong-Kyum Kim

Postdoc @ Max Planck Institute for Security and Privacy (MPI-SP)

prof_pic.png

I am a postdoctoral researcher at the Max Planck Institute for Security and Privacy (MPI-SP). I completed my Ph.D. in Physics at KAIST, where I focused on AI applications in nonequilibrium physics. My research interests lie at the intersection of AI, complex systems, and nonequilibrium physics, with a particular focus on deep learning approaches.

I am passionate about using interdisciplinary approaches to gain a better understanding of how AI algorithms function and how we can improve their performance. To this end, I am currently exploring the use of neuroscience methods to gain insight into the behavior and performance of deep learning algorithms. I believe that this approach, known as brain-inspired AI, has the potential to lead to significant advances in the field of AI.

For more information, check out my publications and CV. I am always open to discussing my research and potential collaboration opportunities.

publications & preprints

  1. ICLR
    Bilinear relational structure fixes reversal curse and enables consistent model editing
    Dong-Kyum Kim, Minsung Kim, Jea Kwon, Nakyeong Yang, and Meeyoung Cha
    In The Fourteenth International Conference on Learning Representations 2026
  2. ICLR
    Erase or Hide? Suppressing Spurious Unlearning Neurons for Robust Unlearning
    Nakyeong Yang, Dong-Kyum Kim, Jea Kwon, Minsung Kim, Kyomin Jung, and Meeyoung Cha
    In The Fourteenth International Conference on Learning Representations 2026
  3. Preprint
    How Training Data Shapes the Use of Parametric and In-Context Knowledge in Language Models
    Minsung Kim, Dong-Kyum Kim, Jea Kwon, Nakyeong Yang, Kyomin Jung, and Meeyoung Cha
    arXiv preprint arXiv:2510.02370 2025
  4. Preprint
    Uncovering Emergent Physics Representations Learned In-Context by Large Language Models
    Yeongwoo Song, Jaeyong Bae, Dong-Kyum Kim, and Hawoong Jeong
    arXiv preprint arXiv:2508.12448 2025
  5. ICLR Blogpost
    In Search of the Engram in LLMs: A Neuroscience Perspective on the Memory Functions in AI Models
    Minsung Kim, Jea Kwon, Dong-Kyum Kim, and Meeyoung Cha
    In The Fourth Blogpost Track at ICLR 2025 2025
  6. Nat. Comm.
    Spontaneous emergence of rudimentary music detectors in deep neural networks
    Gwangsu Kim, Dong-Kyum Kim, and Hawoong Jeong
    Nature Communications 2024
  7. NeurIPS
    Transformer as a hippocampal memory consolidation model based on NMDAR-inspired nonlinearity
    Dong-Kyum Kim, Jea Kwon, Meeyoung Cha, and C. Justin Lee
    In Thirty-seventh Conference on Neural Information Processing Systems 2023
  8. IJCV
    SUBTLE: An Unsupervised Platform with Temporal Link Embedding that Maps Animal Behavior
    Jea Kwon, Sunpil Kim, Dong-Kyum Kim, Jinhyeong Joo, SoHyung Kim, Meeyoung Cha, and C. Justin Lee
    International Journal of Computer Vision 2024
  9. PRR
    Multidimensional entropic bound: Estimator of entropy production for Langevin dynamics with an arbitrary time-dependent protocol
    Sangyun Lee, Dong-Kyum Kim, Jong-Min Park, Won Kyu Kim, Hyunggyu Park, and Jae Sung Lee
    Phys. Rev. Research Mar 2023
  10. BigComp
    Neural Classification of Terrestrial Biomes
    Vyacheslav Shen, Dong-Kyum Kim, Elke Zeller, and Meeyoung Cha
    In IEEE International Conference on Big Data and Smart Computing Mar 2023
  11. NeurIPS-W
    Transformer needs NMDA receptor nonlinearity for long-term memory
    Dong-Kyum Kim, Jea Kwon, Meeyoung Cha, and C. Justin Lee
    In NeurIPS 2022 Memory in Artificial and Real Intelligence workshop Mar 2022
  12. PRR
    Estimating entropy production with odd-parity state variables via machine learning
    Dong-Kyum Kim, Sangyun Lee, and Hawoong Jeong
    Phys. Rev. Research Apr 2022
  13. PRR
    Inferring dissipation maps from videos using convolutional neural networks
    Youngkyoung Bae, Dong-Kyum Kim, and Hawoong Jeong
    Phys. Rev. Research Aug 2022
  14. PRR
    Deep reinforcement learning for feedback control in a collective flashing ratchet
    Dong-Kyum Kim, and Hawoong Jeong
    Phys. Rev. Research Apr 2021
  15. PRL
    Learning Entropy Production via Neural Networks
    Dong-Kyum Kim, Youngkyoung Bae, Sangyun Lee, and Hawoong Jeong
    Phys. Rev. Lett. Oct 2020
  16. JKPS
    Multi-label classification of historical documents by using hierarchical attention networks
    Dong-Kyum Kim, Byunghwee Lee, Daniel Kim, and Hawoong Jeong
    Journal of the Korean Physical Society Oct 2020